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Abstract: Hip implant made from titanium is special due to its lower modulus of elasticity to avoid stress 

shielding with the human bone. One type of load the material designed to withstand is a gradually increased 

compressive force which happened when the patient changes his/her position from sitting to standing. This 

study examined the capability of a metal on polymer (MOP) implant made from commercially pure titanium 

(CP-Ti) and ultra-high molecular weight polyethylene (UHMWPE) loaded up to 3 kN according to ISO 

14242 standard. Two CP-Ti/UHMWPE MOP models with femoral diameter of 22 mm and 32 mm were 

simulated with finite element. The results expressed in load displacement curves were validated with 

compressive load experimental tests. Both materials are capable to withstand the load. Simulation data are in 

good agreement with the experiments. 
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1. Introduction 

Lower limb orthopedic implant is a biomedical product designed to help patients with osteoarthritis to regain their 

productive life. This joint disease occurs in the hip, knee and ankle, could be caused by degenerative process and 

trauma by accidents. Patients with acute stage would experience severe pain that reduce their mobility or became 

immobile at all. This problem is solved when doctors performed surgeries to put the implants to replace the defective 

joints [1]. One of these implants is the hip implant. This product has two main parts, an acetabular cup to be placed at 

the acetabulum of pelvic bone and a stem positioned at the femur. The biomaterials most commonly used for the cup 

and stem are polymer, i.e. Ultra High Molecular Weight Polyethylene (UHMWPE) and metals such as stainless steel, 

cobalt chrome (CoCr) and titanium alloys. These materials must be capable to support human body load in patient’s 

daily activities and biocompatible with the surrounding tissues.  

Current commercially available implants are successful to be used from 10 up to 20 years [2-4]. However, several 

problems are still challenging to be solved. One of which is the load problem. Metallic biomaterials used for stem are 

too stiff compared to the thigh bone. The modulus of elasticity that is far higher than bone would cause a stress 

shielding problem [5]. When high load take place, the bone which is mechanically inferior to the metallic implant 

could crack or even break. This modulus mismatch problem [5-6] could arise specially in younger active patients. 

Recent trends show the increased number of young patients between 45 to 65 years old [7]. Stem material should 

ideally not only strong enough to withstand mechanical load but also has a modulus of elasticity closer to the bone. 

The purpose of this research is to study a low modulus of elasticity metal, i.e. pure titanium as an alternative for 

metallic stem material. Its modulus is about a half compared to the other stem biomaterials (Table 1). Low modulus 
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materials are able to transmit more physiological load to the femur, hence stress shielding would be avoided. These 

materials are also enable bone resorption into the femur [8]. Aside from that, titanium is also light and highly 

biocompatible. The released titanium ions to the surrounding tissues are not toxic as found in other metals which 

contain nickel such as stainless steel and CoCr alloys. The disadvantages are its less wear resistant and more 

expensive to fabricate. Hip implant computer model was created, computed, and verified with experimental data. The 

experiments performed to test the capability of implants to support mechanical load. Femoral head and cup 

components of the implants were made from cast commercially pure titanium (CP-Ti) and machined UHMWPE. 

 

Table 1. Mechanical properties of metallic stems and human bone 

Material 
Density in 

𝑔𝑟𝑎𝑚

𝑐𝑚3  
Modulus of elasticity, 

E (GPa) 
Remark 

AISI 316L 8 [9] 200 [10-11] Biocompatible but the nickel content is toxic. 

CoCr alloy 9.2 [12] 200-300 [8][10] Biocompatible but it still contain nickel, although in 

less concentration than 316L. 

CP-Ti 4,51 [9] 110 [8][10] Highly biocompatible but expensive and less wear 

resistant. 

Bone 1.8-2.1 [12] 1-30 [11[[13] Its mechanical properties depends on various factors 

such as age, gender and race. 

 

2. Materials and methods 

Load displacement modelling of the CP-Ti and UHMWPE hip implant were performed with two models, the 22 mm 

and 32 mm femoral head diameters as shown in Fig 1. The radial clearance on both models are similar. It is 100 μm 

for those femoral size range [14-15]. These hip implant models were created and computed with Abaqus finite 

element software. The numerical results were then validated with experimental data. Fig 2 and Fig 3 show the 

experimental setup of the 22 mm and 32 mm femoral head size models in a universal testing machine. Femoral heads 

were set at a base 23o from horizontal surface as commonly used in hip simulators [16]. Compressive loads of 

approximately 3 kN according to ISO 14242-1 were applied gradually. The recorded force (F) and time (t) were then 

combined as dynamic load data, F=f(t). These data were used as the input of simulations (Fig 4).  

 

Figure 1. Physical model 
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Figure 2. Experimental setup for the 22 mm femoral head 

model. 

 Figure 3. Experimental setup for the 32 mm femoral 

head model. 

 

 
Figure 4.  Dynamic load input data, F=f(t) for simulation. 

 

Specimens were prepared as other hip implant studies. The femoral head material is a cast CP-Ti produced by 

investment casting method from a Japanese investment local industry, Itokoh Ceperindo in Klaten, Central Java, 

Indonesia. The purity of titanium was tested with XRF and the result is 99,7 %. Femoral head specimens were 

produced by finishing the cast products with a turning machine. This machining process was followed by wet 

polishing to meet the required maximum surface roughness of metallic femoral material [17]. On the other hand, the 

acetabular cup specimens were produced with the same turning process without polishing, in order to avoid adsorbed 

abrassive particles on the surface of polymer. Metal backing made from AISI 304 was used to support the acetabular 

cup. A set of three femoral head and acetabular cup pairs were tested to obtain experimental data for simulation 

validations. 

Hip implant computer models were examined with a contact mechanic algorithm of the finite element software. 

Fig 5 shows the simulation steps. First, a preprocessing step was performed. Models were prepared by setting up 
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simulation inputs such as material properties, loads, boundary conditions (BCs), and contact mechanic. The material 

properties of all models are shown in Table 2. Further input data for the polymer, i.e. elastoplastic properties was also 

set. All metallic biomaterials model, i.e. femoral head and metal backing were determined as rigid bodies because 

their modulus of elasticity are far higher than polymer. Load inputs F=f(t) were taken from Fig 4 and applied in 

vertical direction, downward into the metal backing model. BCs were set properly with femoral component in a static 

position, pushed by acetabular cup with certain compressive load, F. The next input was contact mechanic setup. The 

master and slave surfaces are the metals and UHMWPE respectively. Normal behavior contact was set as hard 

contact. All models were then discretized with linear hexahedral meshes [18]. Femoral head element size was set 1 

mm. Acetabular cup was treated gradually with larger element at the outer surface to the smaller element at the inner 

surface. Element size at this inner or contact surface was set 0.2 mm. The output of computation i.e., contact load, F 

and displacement were then extracted from the databases for further data analysis and interpretations. A custom script 

written in Python scientific programming language was created to automate the data extraction process. 

 

 
Figure 5. Flow chart of simulation processes. 

Table 2. Mechanical properties related to contact mechanics 

Component Material ρ ( 
𝑔𝑟𝑎𝑚

𝑐𝑚3 )  E (GPa) 
Poisson 

ratio, ν  
Contact mechanic setup 

Femoral CP-Ti 4.5 110 0.34 Rigid body, master surface  

Cup 

Metal Backing 

UHMWPE 

AISI 304 

0.9 

8 

0.8 

193 

0.46 

0.3 

Deformable, slave surface 

Rigid body 

 

3. Results and discussion 

Computational and experimental results in this study are presented in Fig 6 and Fig 7. The experimental results are not 

calculated in average values because the recorded time from data acquisition are not at the same or constant intervals. 

Finite element contact algorithm calculated the displacements based on the compressive loads input. The combination 

of these data in form of F = f(d) where d is the displacement, are in good agreement with experimental data. 

Pre-processing: 

Geometries, material properties, loads, boundary conditions, 

meshing and contacts mechanic. 

Processing: Contact algorithm. 

Post Processing: 

1. Simulation data extraction. 

2. Validation. 

End 

Start 
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Figure 6. Load displacement relation of the 22 mm 

femoral head model. 

 Figure 7. Load displacement relation of the 32 mm 

femoral head model. 

 

The relationship between compressive load and displacement is nonlinear. This trend is similar to the 

experimental result of [19] on the test of CoCr and UHMWPE. Compressive force rises exponentially as the 

displacement increased. According to [20], the ratio between force (F) and displacement (d) is called stiffness of the 

contact (c). Calculation results of c and made a chart of c = f(d) yield to a linear trend (Fig 8). By comparing Fig 6 and 

Fig 7 to Fig 8, it means that as d increase, so does the stiffness to resist contact. Further penetration is much harder 

and the force needed will be too high. The geometry of the femoral and acetabular cup mechanical contact is 

conformal. The contact state of this ball and socket conformal geometry is area contact [21]. It is different from the 

Hertz contact theory which assumes the state is a point contact. Finding the solution of a conformal contact is very 

difficult, therefore it is necessary to use the numerical method to solve this problem. The finite element contact 

mechanic algorithm is successfully modelled the contact phenomena between pure titanium and UHMWPE. The 

computed displacements are in good agreement with the experimental data. 

 
Figure 8. Stiffness of the contact. 
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Experimental results show that the pure titanium is capable to support a 3 kN ISO standard physiological load in 

the soft on hard mechanical contact setup. The position of implant components remains stable during and after the 

compressive normal force was applied through the metal backing. No visible damage marks were found at the surface 

of both titanium and UHMWPE materials. 

Computational data could represent the contact mechanic situation between pure titanium femoral and UHMWPE 

cup. Nonlinear regressions (power law trend lines) of the data at Fig 6 and Fig 7 in form of equation 𝐹 = 𝑎. 𝑑𝑏, yield 

to b = 2.83 (R2 = 0.95) and b = 3.13 (R2 = 0.89) for the 22 mm and 32 mm femoral head models respectively. The 

magnitude of these exponents are higher than the Hertzian contact theory where b = 1.5 [22]. It means that these 

contact mechanic situations are less stiff than Hertzian contact. The physical meaning is the contact areas are large and 

the Hertz assumptions are no longer hold. This would impact on the analysis of other phenomena, i.e. the wear of 

polymer. The most popular mathematical model of wear assumes that normal force (FN) is proportional to the contact 

area (A) or 𝐹𝑁 ∝ 𝐴. This is true as long as the real contact area is small compared to the nominal contact area [23]. In 

the case of soft on hard contact such as this studied polymer and pure titanium pair, the deformation of UHMWPE on 

the surface asperities of the much harder metal yields a larger contact area. Hence the effect of this should be 

considered on the worn polymer models. 

4. Conclusion 

Pure titanium femoral component of hip implant is capable to withstand 3 kN mechanical load as suggested by ISO 

14242-1. The contact mechanic between polymer cup and pure titanium femoral head can be modelled and simulated 

with finite element method. Results from the two models, i.e. 22 mm and 32 mm femoral diameter are in good 

agreement with experimental data. These contact mechanic situations are less stiff than theoretical Hertzian contact, 

hence the contact areas are large and the Hertz assumptions are no longer hold. 
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